_pd_instr
This section contains information relevant to the instrument used for the diffraction measurement, similar to this IUCr section.
_pd_instr.resolution
In general, the profile of a Bragg reflection centred at the peak position can be approximated by mathematical convolution of contributions from the instrument, called the instrumental resolution function, and from the microstructure of the sample. Because many contributions to powder diffraction peaks have a nearly Gaussian or Lorentzian shape, the pseudo-Voigt function, is widely used to describe peak profiles in powder diffraction.
Half-width parameters (normally characterising the instrumental resolution function) as implemented in CrysPy:
- _pd_instr.resolution_u
- _pd_instr.resolution_v
- _pd_instr.resolution_w
Lorentzian isotropic microstrain parameter as implemented in CrysPy:
- _pd_instr.resolution_x
Lorentzian isotropic particle size parameteras implemented in CrysPy:
- _pd_instr.resolution_y
_pd_instr.reflex_asymmetry
Peak profile asymmetry parameters as implemented in CrysPy.
- _pd_instr.reflex_asymmetry_p1
- _pd_instr.reflex_asymmetry_p2
- _pd_instr.reflex_asymmetry_p3
- _pd_instr.reflex_asymmetry_p4
_pd_instr.2theta_bank
Time-of-flight parameters as implemented in CrysPy.
_pd_instr.dtt
Time-of-flight parameters as implemented in CrysPy.
- _pd_instr.dtt1
- _pd_instr.dtt2
_pd_instr.zero
Time-of-flight parameters as implemented in CrysPy.
_pd_instr.alpha
Time-of-flight parameters as implemented in CrysPy.
- _pd_instr.alpha0
- _pd_instr.alpha1
_pd_instr.beta
Time-of-flight parameters as implemented in CrysPy.
- _pd_instr.beta0
- _pd_instr.beta1
_pd_instr.sigma
Time-of-flight parameters as implemented in CrysPy.
- _pd_instr.sigma0
- _pd_instr.sigma1
- _pd_instr.sigma2