Diffusion Model¶
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
In [1]:
Copied!
import matplotlib.pyplot as plt
import numpy as np
from easydynamics.sample_model import BrownianTranslationalDiffusion
%matplotlib widget
import matplotlib.pyplot as plt
import numpy as np
from easydynamics.sample_model import BrownianTranslationalDiffusion
%matplotlib widget
In [2]:
Copied!
# Create Brownian Translational Diffusion model
# and plot the model for different Q values.
# Q is in Angstrom^-1 and energy in meV.
Q = np.linspace(0.5, 2, 7)
energy = np.linspace(-2, 2, 501)
scale = 1.0
diffusion_coefficient = 2.4e-9 # m^2/s
diffusion_unit = 'm**2/s'
diffusion_model = BrownianTranslationalDiffusion(
display_name='DiffusionModel',
scale=scale,
diffusion_coefficient=diffusion_coefficient,
diffusion_unit=diffusion_unit,
)
component_collections = diffusion_model.create_component_collections(Q)
cmap = plt.cm.jet
nQ = len(component_collections)
plt.figure()
for Q_index in range(len(component_collections)):
color = cmap(Q_index / (nQ - 1))
y = component_collections[Q_index].evaluate(energy)
plt.plot(energy, y, label=f'Q={Q[Q_index]} Å^-1', color=color)
plt.legend()
plt.show()
plt.xlabel('Energy (meV)')
plt.ylabel('Intensity (arb. units)')
plt.title('Brownian Translational Diffusion Model')
# Create Brownian Translational Diffusion model
# and plot the model for different Q values.
# Q is in Angstrom^-1 and energy in meV.
Q = np.linspace(0.5, 2, 7)
energy = np.linspace(-2, 2, 501)
scale = 1.0
diffusion_coefficient = 2.4e-9 # m^2/s
diffusion_unit = 'm**2/s'
diffusion_model = BrownianTranslationalDiffusion(
display_name='DiffusionModel',
scale=scale,
diffusion_coefficient=diffusion_coefficient,
diffusion_unit=diffusion_unit,
)
component_collections = diffusion_model.create_component_collections(Q)
cmap = plt.cm.jet
nQ = len(component_collections)
plt.figure()
for Q_index in range(len(component_collections)):
color = cmap(Q_index / (nQ - 1))
y = component_collections[Q_index].evaluate(energy)
plt.plot(energy, y, label=f'Q={Q[Q_index]} Å^-1', color=color)
plt.legend()
plt.show()
plt.xlabel('Energy (meV)')
plt.ylabel('Intensity (arb. units)')
plt.title('Brownian Translational Diffusion Model')
Out[2]:
Text(0.5, 1.0, 'Brownian Translational Diffusion Model')